151 First Side

Final Report April 9th, 2008

William J. Buchko

Structural Option

AE 481w – Senior Thesis The Pennsylvania State University

Thesis Advisor: Kevin Parfitt

151 First Side Pittsburgh, PA

151 First Side

www.151firstside.com

PRIMARY PROJECT TEAM

Owners: EQA Landmark Communities Ralph A. Falbo, Inc. Zambrano Corporation Architect: Indovina Associates Architects Structural Engineer: The Kachele Group MEP Engineer: RAY Engineering Electrical Consultant: Caplan Engineering Company Contractor: Zambrano Corporation

GENERAL PROJECT INFO

18 story condominium including parking 233,000 SF \$24M construction cost

CONSTRUCTION TYPE

Design-Build

ARCHITECTURE

82 units ranging from 1,000 to 4,000 SF Open floor plan with large windows gives view of river Set backs allow for large balconies on upper floors

STRUCTURAL

Floor is Hambro system consisting of steel joists, steel decking, and concrete slab Columns are steel W shapes Exterior walls are 8" CMU with 4" veneer Lateral bracing is a combination of braced frames and moment connections Foundation is caisson system

MECHANICAL

Mechanical system is\ an AAON RN040 36.7 Ton roof top unit with individual heat pumps per unit.

ELECTRICAL

Main and secondary systems are 120/208 volt 3 phase 4 wire. Main switch is 1800A

Lighting

Most lighting is recessed indirect troffers with fluorescent downlights with wall washers in corridors

William J. Buchko - Structural Option

http://www.engr.psu.edu/ae/thesis/portfolios/2008/wjb170/

Project Abstract

Table of Contents

Project Abstract
Executive Summary
Building Overview
Structural System Overview
Foundation7
Slab on Grade7
Structural Frame7
Floor and Roof System7
Lateral System
Codes
Design Loads13
Lateral Force Distribution
Initial Comparison Overview21
Hambro Composite Joist System (Current)22
Steel Composite System24
Depth Topics and Proposal26
Breadth Topics and Proposal26
Structural Depth
Floor System27
Lateral System

Final Report William J. Buchko	151 First Side Pittsburgh, PA
Acoustical Breadth	
Floor System	
Mechanical System	
Construction Management Breadth	
Scheduling	
Cost	
Conclusions	40
Acknowledgements	41
Appendix	42

Executive Summary

Report Summary:

The purpose of this final report is to document the findings of the year long thesis project. Throughout the year 151 First Side was analyzed from the ground up. After initial comparisons, 2 changes in structural systems were proposed. In addition, acoustical changes were also proposed.

The structural breadth includes an analysis of the floor system, as well as the lateral system. A composite beam system was found to be a suitable alternative to the Hambro composite joist system originally used. While three lateral systems were analyzed, none were found to be suitable alternatives.

The floor system proposed was

checked for its acoustical qualities. It was found to equal or better all of those found in the original floor system. The mechanical system was also explored to see if the sound level on the penthouse terrace could be reduced. It was found that by moving the roof top unit to the opposite side of the mechanical room, the sound level could be drastically reduced to below the accepted level.

The cost and scheduling of each proposed system was also considered. The proposed floor system was able to reduce cost and labor time, though it was not able to reduce the length of the critical path. The proposed acoustical changes were found to have no effect on scheduling and a negligent effect on cost.

Building Overview

Architecture

Architecture:

151 First Side is an 18 story 82 unit condominium with units ranging from 1,000-4,000 SF. It features an open and adjustable floor plan to allow customization by the resident. The first three floors are resident parking with a central entrance. The 4th level is a terrace level with levels 5 through the Penthouse consisting of one to four living spaces per floor. The upper levels are set back to allow large outdoor terraces.

Building Envelope:

The exterior walls consist of 8" CMU covered with a 4" veneer. The roof system is comprised of Hambro joists with $1\frac{1}{2}$ " steel deck topped with $3\frac{1}{4}$ " normal weight concrete.

Building Systems.

Mechanical System: The building temperature is controlled by a 36.7 ton roof top unit by AAON. Each unit as well as each major common space also has its own heat pump with wall mounted thermostat. Hot water for the building is provided by three boilers located in the sub-basement.

Electrical System: The main power system provided by the Duquesne Electric vault is a 120/208 3 phase system. The main switch is rated at 1800A. Heating and cooling equipment run at 208V. while the boilers and general building uses 120V.

Lighting System: The units are primarily lit by incandescent downlights. Corridors contain both fluorescent downlights as well as wall washers. Offices and general areas contain recessed indirect troffers with electronic ballasts. The parking area has surface mounted fixtures with magnetic ballasts. The outdoor canopy lighting is provided by recessed metal-halide downlights with electronic ballasts.

Construction Details: The owner is a cooperation of three individual companies, Zambrano Corp., Ralph A. Falbo, Inc., and EQA Landmark Communities. The largest of these companies, Zambrano Corp., is also the general contractor. This building was completed as a design-build project. Physical construction was typical, with crane tie-ins on the 8th and 16th floors. A vertical survey had been preformed and designs changed to accommodate an older building which was leaning 3" into the property.

Structural System

Foundation:

The foundation was designed based on soil reports prepared by Engineering Mechanics, Inc. and Ackenheil Engineering, Inc., dated April, 2002 and July 1, 2005 respectively. Due to the close proximity of the Monongahela River pressure injected auger cast piles, 18" in diameter were used. Pile tips were placed at an elevation of 674'-0", which gives an average length of 52'. Each pile has a capacity of 120 tons. Pile caps are made of concrete with a 28 day strength of f'_c = 3000psi.

Slab on Grade:

The sub-basement and basement floors consist of slab on grade at elevations 725'-0" and 728'-0" respectively. Slabs are made from 5" of concrete with a 28 day strength of $f_c = 4000$ psi and are reinforced with 6x6 w2.1 x w2.1 welded wire fabric. Concrete was placed above 4" of AASHTO 57 well graded compacted granular stone.

Structural Frame:

The structural framing is made of steel W shapes. Beams range from W10 to W16 with the most common size being a W14x61. The columns are W12 shapes with weights ranging from 40 to 336 pounds per linear foot. Common column splices occur at every second floor.

Floor and Roof System:

The parking levels on the first three stories as well as the terrace level have poured concrete floors. All parking floors are 4" of light weight concrete on a 2" 20ga. galvanized composite metal deck with the exception of some highly loaded areas of the ground floor in which there is a 6" slab. The 4" sections on the parking levels are reinforced with #4 rebar spaced at 12" in both the bottom and the top of the slab with the top bars continuing for ¼ of the span length past the supports. The 6" sections contain 6x6-W2.9xW2.9 welded wire fabric while the terrace level has 6x6-W1.4xW1.4 welded wire fabric for its reinforcement.

The residential and mechanical levels, as well as the roof, contain an MD200 composite floor joist system provided by Hambro. A typical floor plan can be found in figure 1. There is a 3¼" thick slab made from concrete with a 28 day strength of $f_c=4000$ psi. Reinforcing within the concrete is a 6x6-W2.9xW2.9 welded wire mesh. The concrete is supported by 22ga. 1½" galvanized steel deck. Joist depth is 16" unless otherwise noted. The top chord is an "S' shape piece of cold-rolled, ASTM A 1008, Grade 50, 13ga. steel which works as both a compressive member as well as a shear connector while the bottom chord is made of two steel angles. Both chords have a minimum $F_y=50,000$ psi. The web is formed from 7/16" hot-rolled steel bars with an $F_y=44,000$ psi.

Figure 1

Lateral System:

The lateral system is composed of both braced frames as well as special moment frames. Lateral bracing is provided on column lines E and F (Figure 2) and column lines 2, 3, and 4 (Figure 3). Each of these column lines contain both moment connections and braced frames made of W12's or back to back channels.

Figure 2

Figure 3

Codes

Building Code:

International Building Code (IBC), 2003 edition

Structural Concrete:

Building Code Requirements for Reinforced Concrete (ACI 318, latest edition)

Specifications for Structural Concrete (ACI 301, latest edition)

Steel Design:

Specifications for the Design, Fabrication, and Erection of Structural Steel for Buildings (AISC, 9th Edition)

Code of Standard Practice for Steel Buildings and Bridges (with exception of Section 4.2)

Building Design Loads:

ANSI/ASCE-7 2002

Design Loads

General Loads:

Floor Live Loads		
Load Area	Design Load	Minimum Load (ASCE 7-05)
Common Areas	100 psf	100 psf
Corridors	100 psf	100 psf
Parking	40 psf	40 psf
Residential	40 psf	40 psf
Mechanical	150 psf	n/a
Partition Allowance	20 psf where applicable	n/a
Dead Loads		
Item		Design Value
Superimposed Dead Loads	6	
Mechanical, Electrical,	Sprinkler	20 psf

20 psf 5 psf 5 psf Varies Where Applicable

Wind Loads:

Structure

Ceiling Finishes

Floor Finishes

Other Dead Loads

The wind pressures and resulting base shear and overturning moment were calculated based on an exposure category B. The following spreadsheets give a detailed view of the pressure applied to each height level, and the corresponding floors. See the Appendix for my original calculations and diagrams regarding wind.

	Pressure				
V	/ind fror	n the No	orth/Sou	th	
Wind	lward	Leev	ward		
h (ft)	P (psf)	h (ft)	P (psf)	Total	
0-15	6.72	0-15	-9.43	16.15	
20	7.31	20	-9.43	16.74	
25	7 .78	25	-9.4 3	17.21	
30	8.25	30	- 9.43	17.68	
40	8.96	40	- 9.43	18.39	
50	9.55	50	-9.4 3	18.98	
60	10.02	60	-9.43	19.45	
70	10.49	70	- 9.43	19.92	
80	10.96	80	-9.4 3	20.39	
90	11.32	90	-9.43	20.75	
100	11.67	100	- 9.43	21.10	
120	12.26	120	- 9.43	21.69	
140	12.85	140	-9.43	22.28	
160	13.32	160	-9.43	22.75	
180	13.79	180	-9.43	23.22	
200	14.15	200	-9.43	23.58	
250	15.09	250	-9.43	24.52	

	Pressure				
	Wind fro	om the E	ast/Wes	st	
Wind	dward	Lee	ward		
h (ft)	P (psf)	h (ft)	P (psf)	Total	
0-15	6.68	0-15	-9.26	15.94	
20	7.26	20	-9.26	16.53	
25	7.73	25	-9.26	16.99	
30	8.20	30	-9.26	17.46	
40	8.91	40	-9.26	18.17	
50	9.49	50	-9.26	18.75	
60	9.96	60	-9.26	19.22	
70	10.43	70	-9.26	19.69	
80	10.90	80	-9.26	20.16	
90	11.25	90	-9.26	20.51	
100	11.60	100	-9.26	20.86	
120	12.19	120	-9.26	21.45	
140	12.77	140	-9.26	22.03	
160	13.24	160	-9.26	22.50	
180	13.71	180	-9.26	22.97	
200	14.06	200	-9.26	23.32	
250	15.00	250	-9.26	24.26	

	Wind from the North/South						
Floor	Height (Ft.)	Story Height (Ft.)	Trib. Area (Sf.)	P-total (psf)	Story Force (Kip)	Total Shear (Kip)	Overturning Moment (FtKip)
1 (ground)	0	0	0	16.15	0.00	473.61	556969.93
2	13.33	13.33	1242.50	16.15	20.07	473.61	6314.85
3	23.33	10.00	1215.88	17.21	20.93	453.55	10582.79
4	192.83	12.83	1251.38	18.39	23.01	432.62	83424.05
5	180.00	10.67	1136.00	18.98	21.56	409.61	73729.99
6	169.33	10.67	1136.00	19.45	22.10	388.05	65710.08
7	158.67	10.67	1136.00	19.92	22.63	365.96	58065.11
8	148.00	10.67	1136.00	20.39	23.17	343.33	50812.23
9	137.33	10.67	1136.00	20.75	23.57	320.16	43968.57
10	126.67	10.67	1136.00	21.69	24.64	296.59	37568.25
11	116.00	10.67	1171.50	21.69	25.41	271.95	31546.44
12	105.33	11.33	1171.50	22.28	26.10	246.54	25969.16
14	94.00	10.67	1136.00	22.28	25.31	220.44	20721.62
15	83.33	10.67	1136.00	22.75	25.84	195.13	16261.16
16	72.67	10.67	1153.75	22.75	26.25	169.29	12301.69
17	62.00	11.00	1171.50	23.22	27.20	143.04	8868.53
18	51.00	11.00	1171.50	23.22	27.20	115.84	5907.65
Penthouse	40.00	11.00	1544.25	23.58	36.41	88.63	3545.26
Mech. Level	29.00	18.00	1544.25	24.52	37.86	52.22	1514.52
Roof	11.00	11.00	585.75	24.52	14.36	14.36	157.98

North/South Direction:

Base Shear: 473.61 Kip Overturning Moment: 556969.93 Ft.-Kip

Wind from the East/West							
Floor	Height (Ft.)	Story Height (Ft.)	Trib. Area (Sf.)	P-total (psf)	Story Force (Kip)	Total Shear (Kip)	Overturning Moment (FtKip)
1 (ground)	0	0	0	15.94	0.00	468.27	550854.54
2	13.33	13.33	1242.50	15.94	19.81	468.27	6243.61
3	23.33	10.00	1215.88	16.99	20.66	448.47	10464.19
4	192.83	12.83	1251.38	18.17	22.73	427.80	82494.47
5	180.00	10.67	1136.00	18.75	21.30	405.07	72912.39
6	169.33	10.67	1136.00	19.22	21.84	383.77	64984.40
7	158.67	10.67	1136.00	19.69	22.37	361.93	57426.38
8	148.00	10.67	1136.00	20.16	22.90	339.56	50255.38
9	137.33	10.67	1136.00	20.51	23.30	316.66	43488.44
10	126.67	10.67	1136.00	21.45	24.36	293.36	37159.44
11	116.00	10.67	1171.50	21.45	25.13	269.00	31203.98
12	105.33	11.33	1171.50	22.03	25.81	243.87	25688.08
14	94.00	10.67	1136.00	22.03	25.03	218.06	20497.85
15	83.33	10.67	1136.00	22.50	25.56	193.03	16086.03
16	72.67	10.67	1153.75	22.50	25.96	167.47	12169.50
17	62.00	11.00	1171.50	22.97	26.91	141.51	8773.53
18	51.00	11.00	1171.50	22.97	26.91	114.60	5844.52
Penthouse	40.00	11.00	1544.25	23.32	36.02	87.69	3507.53
Mech. Level	29.00	18.00	1544.25	24.26	37.46	51.67	1498.52
Roof	11.00	11.00	585.75	24.26	14.21	14.21	156.31

East/West Direction:

Base Shear: 468.27 Kip Overturning Moment: 550854.54 Ft.-Kip

Seismic Loads:

Even though Pittsburgh is not known for its seismic activity, a simplified check has been performed to ensure that wind loading is indeed the controlling case. The building has been analyzed as a seismic design category B with ordinary concentric braced framing as its main seismic force resisting system. I have used software from the USGS website as an aid in calculating the required data. I have also preformed a vertical distribution of the seismic load. A sketch of the resultant loads can be found within the Appendix.

When I checked my value for the design base shear with that of the designer I noticed that mine was almost 1% off. When I investigated this further I found that the designer and I had started with different values for spectral response acceleration (S_1 and S_s). This can be accounted for based on the method of obtaining these values. I determined these values based on the output of the USGS software after inputting the longitude and latitude. It seems that the designer had used the then-current generic values for south eastern Pennsylvania. This discrepancy does not affect the overall design as both values are still less than the wind loads.

The following pages include a print out of the USGS website displaying the values that I have used for my analysis in addition to a spreadsheet showing the vertical distribution of the seismic load and final base shear.

Seismic Hazard Curves and Uniform Hazard Respo	inse Spectra
File Help	
Select Analysis Option: NEHRP Recommended Provisions fo	r Seismic Regulations for New Buildings and Other Structures 🔽 Description
Region and DataSet Selection	Output for All Calculations
Geographic Region:	151 First Side - Buchko
	Conterminous 48 States
Conterminous 48 States	2003 NEHRP Seismic Design Provisions
Data Edition:	Longitude = -80.0
2003 NEHRP Seismic Design Provisions	Spectral Response Accelerations Ss and Sl
	Ss and S1 = Mapped Spectral Acceleration Values
Colort City Leasting	Data are based on a 0.05 deg grid spacing
-Select Site Location	Period Sa
Lat-Lon (Recommended) O Zip-Code	(sec) (g)
Latitude (Degrees) Longitude (Degree	0.2 0.125 Ss, Site Class B
40.438 -80.0	1.0 0.045 51, 5102 01055 5
(24.7,50.0) (-125.0,-65.0)	
Paris Days motors	Conterminous 48 States
-Basic Parameters-	2003 NEHRP Seismic Design Provisions
Ground Motion:	Longitude = -80.0
MCE Ground Motion	Spectral Response Accelerations SMs and SM1
	SMs = FaSs and SM1 = FvS1
Calculate Ss & S1 Calculate SM & SD Values	5100 Class D - Ta - 1.0 , IV - 2.4
Response Spectra	Period Sa
	(sec) (g)
	1.0 0.117 SM1, Site Class D
	Conterminous 48 States
	Latitude = 40.438
	Longitude = -80.0
	SDs = 2/3 x SMs and SD1 = 2/3 x SM1
Map Spectrum Site Modified Spectrum	Period Sa
Design Spectrum View Spectra	(sec) (g)
	1.0 0.078 SD1. Site Class D
	View Maps Clear Data
	2 UNIS
	science for a changing world

	Vertical Distribution of Seismic Load					
		K=1.67	Vb=304.7			
Level	wx (Kip)	hx (Ft.)	wxhx^1.67	Сvх	Fx (Kip)	
Roof	1304.04	216.17	10336846.93	0.1342	40.88	
Mech. Level	1304.04	205.17	9473474.13	0.1230	37.47	
Penthouse	1304.04	187.17	8126668.00	0.1055	32.14	
18	1304.04	176.17	7344860.53	0.0953	29.05	
17	1304.04	165.17	6595099.13	0.0856	26.08	
16	1304.04	154.17	5878073.59	0.0763	23.25	
15	1304.04	143.50	5214751.14	0.0677	20.62	
14	1304.04	132.83	4583674.00	0.0595	18.13	
12	1304.04	122.17	3985675.73	0.0517	15.76	
11	1358.64	110.83	3529424.99	0.0458	13.96	
10	1358.64	100.17	2980658.20	0.0387	11.79	
9	1358.64	89.50	2469726.52	0.0321	9.77	
8	1358.64	78.83	1998066.39	0.0259	7.90	
7	1358.64	68.17	1567363.51	0.0203	6.20	
6	1358.64	57.50	1179640.56	0.0153	4.67	
5	1358.64	46.83	837396.93	0.0109	3.31	
4	1358.64	36.17	543850.54	0.0071	2.15	
3	1473.20	23.33	283650.10	0.0037	1.12	
2	1473.20	13.33	111406.21	0.0014	0.44	
1 (ground)	1473.20	0.00	0.00	0.0000	0.00	
Totals	27025.08			1.00	304.70	

Seismic Loading:

Base Shear: 304.7 Kip

Lateral Force Distribution

151 First Side achieves its lateral force resistance through a combination of ordinary concentric braced framing and moment connections. The building was originally designed to only use ordinary concentric braced framing, but due to a change in architectural plan the framing was altered to its current state. The parking levels rely solely on two sets of braced frames. Moment connections were used in many areas of the residential levels so that none of the rentable space would have a diagonal brace within it. This resulted in diagonal braces near the central core with three sets of moment connections in the N-S direction and two sets in the E-W direction.

Lateral loads are transferred from the façade to the framing and into the floor system. Since the Hambro floor system creates a rigid diaphragm, the loads are taken from the floor and applied to the lateral frames as both a moment at the moment connections and as an axial compression force at the braced frames. These loads are carried through the columns and distributed through the foundation to the surrounding soil.

Due to the somewhat complex nature of this dual system, a RAM Structural System model was created to further analyze the distribution of lateral forces and the effects they have on the building. The original design documents were converted into a 3d computer model which could be analyzed using RAM Frame.

Initial Comparison Overview

Systems Analyzed:

Hambro Composite Joist System (Current) Steel Composite System

Design Criteria:

Live Load: 40psf + 20psf partition allowance (except common areas) Superimposed Dead Load: 30psf Self Weight: Varies

Deflection:

Steel:

Total = L / 240Live = L / 360

Fire Rating: 2 Hours

Area of Design:

The area being analyzed is the residential levels as these contain the typical framing system of the building and provide the most opportunity for change. Depending on the system being analyzed, either a single worst case bay or a worst case frame will be used. I will then use these values to determine general properties for the entire system. These values will be conservative due to the methods used to obtain them, but this will allow for special details and situations which will not be discussed in this section. Note that only gravity loads were considered in the preliminary analysis.

Hambro Composite Joist System (Current)

Overview:

The current floor system is a MD2000 Hambro system which contains proprietary composite joists. It is comprised of a $3\frac{1}{4}$ " slab with 16" composite joists resting on W14x61. These values are higher than what the Hambro design guide recommends. After discussion with a Hambro representative, I have found that the concrete slab was increased in depth by $\frac{1}{2}$ " for both vibration and acoustical reasons. The deeper joists were used due to slightly higher loads than what the design guide is written for, the need for larger mechanical openings, as well as the ability to hang the ceiling from the joists without interference from the beams. More information can be found in the Appendix on pages 47 and 48.

Advantages:

The Hambro system has many advantages. Since the lateral conditions are controlled by wind loading, the lighter weight of the joist is desirable. The open webs of the joist also allow for easy penetrations of mechanical, fire protection, and electrical equipment. The composite action of the joist also allows for a smaller system depth. This system is also relatively quick and easy to install.

Disadvantages:

Joist systems do have some inherent disadvantages. Because of the relative flexibility of the joists, the system can have problems with deflection and sound transmission. This has been taken into consideration in 151 First Side and the slab was made thicker to compensate. Also, more work is needed to obtain the required fire rating of 2 hours. Typical methods include spray-on fire protection or a fire rated suspended or gypboard ceiling, both of which can be costly and/or time consuming.

Typical bays H2-F4 for the Hambro System

Steel Composite System

Overview:

I chose to analyze a more conventional steel framing system consisting of composite beams and composite steel deck. Using the United Steel Deck design manual I have determined that a USD 2" Lok-Floor with 2½" of concrete would be the best choice in decking without requiring shoring. Using a RAM computer model, I have found that the majority of the beams would be W14x22 shapes with an average of 10 studs per beam.

Advantages:

Conventional steel systems are used often because of their many advantages. For 151 First Side the column grid would not need to be adjusted as the beams and decks could be adapted to fit the current layout. The floor would not need any extra fire protection and the beams could be quickly protected by a simple spraying process. Construction is also relatively quick with conventional steel framing, especially when the floor does not require any shoring. In addition, most of the materials that are needed will be readily available for quick delivery.

Disadvantages:

The obvious disadvantage of conventional steel framing is the extra labor involved in placing more beams as well as creating composite action. Another disadvantage is the closed webs. Penetrations may have to be made for mechanical equipment as well as sprinkler systems.

Potential typical bays H2-F4 for the Steel Composite System

Depth Topics and Proposal

In the second technical report, it was determined that a composite steel floor system would be a viable option with the possibility of cutting costs. This type of system has the potential to cost less in raw materials, as well as provide savings in fireproofing. During my research for the third technical report, I found that the building was initially designed with concentrically braced frames as the sole lateral support. It was later decided by the architect that the planned location of braced frames would be too intrusive in the open-floor plan. Because of this, the braced frames in those locations were changed to moment frames. While converting the previous design to the current design may have provided economical benefits in terms of engineering man hours, I feel that with further study a system can be found that will provide the required lateral stability while reducing material and installation costs.

Breadth Topics and Proposal

In addition to my proposed structural redesign I will consider its affect on other systems in the building. I will also be exploring some of the primary concerns of the owner and engineer in regards to serviceability. From these two topics, I have decided on two topics for my breadth studies.

My first breadth study will be an acoustical analysis. The current floor system design had an extra ½" of concrete added to help in both sound transmission and vibration. I will be looking at the effects of my proposed floor system on the acoustical properties of the residential areas. I will also look at possible ways to reduce the noise from the rooftop mechanical unit as the most common complaint from people touring the building is that sound carries from the unit to the 1,000 SF outdoor terrace of the Penthouse.

The second area I will investigate is within the construction management field. Since this project was designed with cost and schedule as major components of the design process, I will be analyzing the effect of my proposals on both of these criteria. Using RS Means, computer software, and information obtained by the contractor and owner, I will perform a cost analysis and schedule impact between the current system and the proposed floor system, including acoustical additions.

Structural Depth

The structural depth covers two topics which were chosen since the original designs were unconventional. The original design for the floor system uses the MD2000 Hambro system, which is a proprietary composite joist system. The lateral system that was used during construction consisted of a mix of braced frames as well as moment connections. Alternative designs were assessed and analyzed for both of these topics. All original design guidelines as well as owner and architect applied criteria were acknowledged and followed in the analysis of each of these alternatives.

As an aid in analysis a previously designed RAM model was used. It was found during the 3rd technical report that RAM can give wrong information when a framing column is ended at a transfer girder instead of continuing down to the support. To solve this issue the RAM model was modified so that all columns within the lateral framing system extended down to the base supports. In the areas where there is no actual column, the added column was modified so that it had a cross sectional area of 0.01 in² and a moment of inertia of 0.01 in⁴. Also the yield strength was reduced to 0.01 ksi. This fulfilled the need for columns to extend to base supports while not affecting the actual design.

Floor System:

151 First Side was designed with a composite joist system by Hambro. The original idea was that a proprietary system, though possibly more costly, would provide a good floor system that met and surpassed the serviceability needs for the residential levels of the condominium. As part of the structural depth, alternative floor systems were analyzed. During the second technical report it was decided that a good alternative may be a composite steel system.

Due to acoustical considerations that will be discussed in the Acoustic Breadth section, it was decided that light weight concrete would be the best decision. It was found that a suitable deck system would be a 4" total depth of light weight concrete on top of B-LOK decking with 1 stud per foot. Most bays have been split into 3 equal sections to allow easy installation and provide small enough spans as to not require any shoring which will save time during construction. A typical floor plan can be seen on page 29.

The 4" of light weight concrete will actually weigh less than the 3¼" of normal concrete used in the current Hambro system. A takeoff was performed to see if the addition of

beams added to the overall weight of the structural steel. Columns were also resized using the RAM model, which can be seen on page 30. The final takeoff including all gravity and lateral structural steel came to 1,167 Tons of steel. This is actually less than the estimated weight of structural steel for the Hambro system which was 1,308 Tons. These numbers were close enough to the original design that they will have little to no effect on the lateral system design. Also, the original structural engineer confirmed that the same foundation could be utilized with little to no change.

Due to the mass and moment of inertia of the beams, there will be less of a vibration problem which can be found with a joist system. Also, since the spacing of the beams is not always uniform due to the different size bays, the beams themselves vary in size. While this may not be as cheap as a system with all the same beams, it is helpful in dealing with vibration. According to the AISC Design Guides for serviceability and vibration, having beams or joists of the same size can causes a "wave" effect which sends a vibration along the deck perpendicular to the beams or joists. The difference in moment of inertia from the different sized beams, as well as the different effective width from the composite action with unequal spacing will cause the "wave effect" to disappear completely.

Typical Floor Beam Design

Column Redesign Using RAM Model

Lateral System:

Due to a change in architectural requirements, the lateral system of 151 First Side was modified to its current complex combination of braced framing and partially restrained moment frames. As part of the structural depth research, multiple alternatives have been considered. The primary alternative systems examined were a system consisting of a concrete core, one consisting of only braced frames, and one consisting of only moment connections.

The first system looked at was the concrete core. This system has the advantage of keeping an open floor plan while providing a rigid central core that also doubles as the required fire protection for the stairwell. However, this system was quickly discarded after discussions with the owner/contractor. The owner/contractor was firm in his position to not mix different trades whenever possible. Because of this position, it would unfeasible to have a steel framing system while using concrete shear walls.

The second lateral system considered was a set of braced frames running the height of the building. It was found that a suitable configuration would be concentrically braced frames along grid lines 2 and 4 between gridlines E and G for the north-south direction. In the east-west direction braced frames could be placed along grid lines E and F between grid lines 2 and 4 as seen on page 32. This system has the advantage of low torsion forces due to its relative symmetry around the center of mass of the building. This idea was discussed with the architect and the owner. It was determined that, while this system would adequately meet all of the structural and serviceability needs, it would not be sufficient in this situation since the diagonal bracing needed between grid lines F and G do not comply with the open floor plan.

Braced Frame Lateral System Layout

The third lateral system considered was one that consisted solely of moment connections to resist the lateral loading. After further research, it was determined that a system of partially restrained moment connections would not be suitable for a building taller than 10 stories. It was also decided that a system of fully restrained moment connections would not be a feasible alternative. This is due not only to the high cost of making a fully restrained connection, but also to the increased cost due to larger columns. Many columns are part of the lateral framing in both the north-south and eastwest. Because of the large moments applied by a fully restrained connection, the columns would need to be increased so that they would not fail in the weak direction.

Because of these issues it has been determined that none of these systems would be an intelligent alternative.

Acoustic Breadth

One of the concerns during the initial design of 151 First Side was sound level and sound transmission. In the original design the floors were adjusted to improve their acoustical qualities. This helped sound transmission from one floor to another. While each floor can be sold as multiple units, the partition walls are not part of the original design and are to be custom made and constructed as per the tenant's needs. This allows for the tenant to have walls with high acoustical qualities if that is what they desire.

The acoustic breadth is being performed for two reasons. First, the proposed floor system will be analyzed and compared to the current Hambro system to ensure that the same acoustic qualities can be met or bettered. Second, the mechanical system will be considered to see if the sound level on the penthouse terrace can be lowered.

Floor System:

As discussed in the structural depth, a composite system utilizing light weight concrete has been chosen as an alternative floor system. The 4" of light weight concrete has slightly less mass than the 3¼" of normal weight concrete. While less mass would normally indicate a lower STC, the difference is very small. As a benefit, however, the lower density light weight concrete can actually outperform the more massive normal weight concrete in its absorption of low end noises.

The introduction of steel beams in place of the steel joists helps with the overall structure born sound by reducing the susceptibility to vibration. The IIC of this system would be comparable to that of the Hambro composite joist system. The IIC could easily be improved by adding a thicker padding between the concrete floor and the floor covering.

Overall the system should achieve an STC of approximately 51 and an IIC of 35 without considering additional floor coverings or ceiling treatments.

Mechanical System:

151 First Side is serviced by a 36.7 ton AAON RN series rooftop unit. The current location of this unit is above the penthouse near approximately 1,000sf of outdoor terrace. Unfortunately this unit is in direct line of sight of the terrace. One of the most common complaints by engineers, construction workers, and potential tenants was that the rooftop unit was loud and distracting while on the penthouse terrace.

Since the perception of loud is quite subjective, a representative of the manufacturer was contacted regarding acoustical data on the specific unit. The representative was unable to provide any relevant data on this unit so another method had to be used to find the sound level.

The Electrical Engineering West building on the University Park campus of Penn State has a 40 ton RK series unit. The RK series is a predecessor to the RM series, which is similar to the RN series used in 151 First Side. Using a Pocket PC equipped with an IVIE IE-33 Real Time Audio Jacket the sound levels of this unit were obtained at 10' and 20' away from the unit. In the figure below the red line shows an average over time from 10' away and the green line shows an average over time from a distance of 20'. As can be seen, the maximum sound level occurs at a frequency of 250Hz at approximately 73dB from 10' away. During the testing, the Real Time Sound Analysis showed a peak sound level of 83dB from 10' away.

IVIE IE-33 Graph

These values have been compared with values obtained by a 3rd party acoustician. Unfortunately the chart of values obtained by the acoustician is not to be published as the project for which they were obtained is still under construction and is on a secure site. While these values concern a different manufacturer, they are extremely close to those found by the IVIE program, confirming that the values obtained are believable. The values obtained by the acoustician will be available for personal discussion and verification.

The original proposal to limit the noise level on the terrace was to install acoustical shielding. Acoustical shielding can theoretically lower the sound level by as much as 17dB for a semi-infinite sound barrier according to <u>Architectural Acoustics</u>. In practice, this value is usually closer to 14dB or 15dB. When installed on a rooftop in an urban area, as is the case with 151 First Side, this reduction is limited to around 6dB due to reflection and refraction of the sound as well as the finite length available on the roof. While this reduction would be welcomed, it does not bring the noise level down to an acceptable level.

To lower the sound level even more, alternative locations have been examined. It was found that the rooftop unit could be placed on the other side of the mechanical room with little effect on the mechanical system. The proposed layout can be seen on page 37. While this would place the unit in direct line of sight with a balcony, this would be preferable to its current location near the much larger, and more likely used terrace. This would lower the noise level in two ways. First, the unit will be 30 feet further away which would reduce the noise level by approximately 15dB if the unit produced sound in a non-directional way. Since the unit produces more sound from the supply end, and this end will now be facing away from all balconies, an additional decrease of 3dB to 5dB will occur. Second, the mechanical room will block a portion of the sound by providing multiple transitions in sound transport mediums. This will easily produce a transmission loss of 20dB which brings the overall sound level on the outdoor terrace to under 40dB which is well within acceptable levels.

151 First Side Pittsburgh, PA

Construction Management Breadth

A main part of any project is cost and scheduling. 151 First Side is no different and both of these played a large role in the original design. It was determined that in addition to meeting all of the original criteria, any alternative designs should be analyzed to see if they could meet or better the scheduling and cost of the original design.

Schedule:

It was found that the original design schedule was controlled by the placement of the structural steel. The placement was scheduled at 177 days. After discussions with both the contractor and the Hambro joist representative it was learned that the steel joists from the Hambro proprietary system were considered part of the structural steel. These joists are installed quicker than steel beams, but are placed closer together. Because of this Hambro recommends scheduling their placement within the same time frame that it would take to erect a conventional steel frame.

The pouring of the floor system for the Hambro composite joist is quite time consuming. The Hambro system must be poured in smaller sections, installing a proprietary composite top chord to each joist. The original schedule allowed for 3 days per floor. A composite beam system can be installed in as little as half of the time it takes to install the Hambro system. A conservative estimate of 2 days per floor was used. Unfortunately, since the structural steel still controlled the critical path, the overall project length was not shortened. There are, however, cost savings as will be discussed in the next section.

Another benefit of using a steel beam design over a steel joist design is fireproofing. It was estimated that a conservative 10 days of the original 130 days could be saved due to the easier application of fireproofing to a beam over a joist. Once again, while this may not affect the critical path, it will save money through labor.

While the proposed braced frame lateral system was not found to be a suitable alternative, such a change would have affected the critical path. Based on information provided by the engineers and the contractors, an estimated 5 days could have been saved on the project. However, since this design does not fit the criteria set forth by the architect and the owner, this is a moot point.

In the original thesis proposal, it was proposed that an acoustical shield be placed around the rooftop HVAC unit. This would have added another task to the schedule. However, after research it was determined that a more economical and effective approach was to move the unit. This move, including extra ductwork, does not increase the scheduling.

A gnatt chart for the original design can be found in the appendix on page 57. One for the proposed floor system is also within the appendix on page 64.

Cost:

As with most things in life, cost was a major factor in the design of 151 First Side. Therefore, a cost analysis was performed on the proposed changes in design to see how they would affect the overall budget. All of the values are either from RSMeans, sample projects that were provided by a contractor and estimator, or given values from representatives.

The Hambro composite joist system, for a building the size of 151 First Side, is approximately \$2.41/SF for decking materials only. The materials used for the composite beam deck system are approximately \$1.79/SF. This is approximately 35% cheaper than the Hambro system. However, this system uses light weight concrete and has a thicker slab. The slab thickness required is 17% larger than the composite joist system. Light weight concrete also costs an estimated 15% more than normal weight concrete. When combined, these add an additional 35% to the cost of the system. Therefore there is virtually no change in the cost to the floor system.

The real savings, however, come with the lower amount of steel in the project. As discussed in the structural breadth section, the redesign of the beam and column system that support the new floor system would result in a decrease in steel by approximately 131 Tons. This results in approximately \$228,000 worth of savings in material alone.

In addition to saving on materials, there is savings in labor as was discussed in the scheduling section of the construction management breadth. The savings in labor can be conservatively estimated at \$30,000 over the course of the project. It is important to note, however, that these total savings of \$258,000 are partially based on the original internal steel estimates. Actual savings may not be as high if the original design was over estimated.

Conclusions

While 151 First Side was designed to meet and exceed all codes and criteria, it may be possible to improve upon the original design. The two main topics explored in this thesis are the structural depth and the acoustics breadth. Of these two sub categories were also analyzed.

Within the structural breadth both the floor system and lateral system were considered. During the analysis of the floor system, it was found that a composite beam system with light weight concrete could be used in place of the current Hambro composite joist system with normal weight concrete. By implementing this system and redesigning the supporting beams and columns, approximately 131 Tons of steel could be saved, in addition to much labor.

During the lateral system analysis 3 separate styles of systems were examined. Unfortunately the concrete core and braced framing systems were unable to fulfill the criteria put forth by the architect and contractor/owner. The third system consisting of only moment frames would be possible, but due to the high cost of fully restrained moment connections this system is not a suitable alternative. Therefore, the existing system consisting of both braced frames and partially restrained moment connections is still recommended.

With the recommendation of a new floor system, the acoustical effects were analyzed. The results showed equal or better acoustical qualities than the original design. Additionally, the mechanical system's acoustical qualities were analyzed. It was found that a drastic improvement in sound level on the penthouse terrace could be achieved by relocating the rooftop unit to the opposite side of the mechanical room.

In addition to the structural depth and the acoustics breadth, the scheduling and cost of each proposed system was analyzed. Each proposed system was found to be either of equal or even potentially lesser cost than the original design.

Acknowledgements

There are many people who should be acknowledged for their contributions to this report as well as the thesis experience as a whole.

Rob Sklarsky, John Moore, and Zambrano, Inc. for owner permission as well as information regarding cost, scheduling, original design, and design criteria

Tony Moscollic, Mark Tayman, and The Kachele Group for their input regarding the original structural design as well as answering general structural questions

Charles Coltharp and Indovina Associates Architects for their input regarding the architectural criteria as well as providing design drawings and specifications.

Peter O'Connor and Hambro Systems for their help regarding the proprietary composite joist system's price, specifications, and design

Kevin Wilson and Cenkner Engineering and Associates, Inc. for their help regarding mechanical systems and acoustical data

Moses Ling for his assistance with the acoustics breadth with data, software, and hardware

Kevin Parfitt for his help with the RAM structural model in addition to all of his general thesis advice

The Thesis Mentors for their help and input throughout the entire thesis process

Without each of these individuals and companies this thesis would not have been successful. Thank you to each of you.

Appendix

	151 First side	Wind Loads 1	po 1/3 W	:Iliam Buchka
•	Design Wind Speed Wind Imperance factor Wind Exposure Categor Building Category II Gere = I 0.18	V= 40 mph II= 1.0 Y B		
	Exposure Coefficients	kh and kz		
22-141 50 SHEETS	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$k_{2\ell} = 1.0 \text{ Top} \\ k_{d} = 0.85 \text{ W} \\ T = 0.1 (16) = 1. \\ \lambda = \frac{1}{7} = 20.57 \\ 2\epsilon = 0.9 \text{ J} \text{ S} / \frac{1+67}{1+} \\ 90 = 3.4 \\ 90 = 3.4 \\ 90 = 3.4 \\ 90 = 3.4 \\ 90 = 3.4 \\ 90 = 3.4 \\ 14 \\ 90 = 3.4 \\ 14 \\ 90 = 3.4 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ $	in graphical factor ind direction factor 8 5. assume flexible structure $T_2 \sqrt{3} \sqrt{3} \sqrt{3} + \sqrt{3} \sqrt{3} \sqrt{3}$ $T_7 \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3}$
0	$R = \sqrt{k} R_{0} k_{1} k_{2}$	8 (0.53 + 0.47 RL) :	= 0.103 N-5 , 1	0,0967 E-W
	it ip in the			
-)	

Wind Loads PS 21 3 William Buchles 151 First Side = 0.814 N-S, 0.816 E-W $Q = \sqrt{\frac{1}{1+0.63(\frac{B+L}{L+1})^{0.67}}}$ $G_{f} = 0.425 \underbrace{(1+1,7(0.239) \int_{3.4^{2}} (Q^{2}|+4.35^{2}(R^{2}))}_{1+1.7(3.4)(0.239)} = 0.836 \text{ N-S}$ Building is Enclosed GCpi = ±0,18 50 SHEETS 100 SHEETS 200 SHEETS Cp windward = 0.8 , USE with the Cp recented = -0.5 N-S use with the -0.494 E-v from interpolation $q_z = 0.00356 k_z (1.0)(0.95)(90^2)(1.0) = (7.6256(k_z))$ 22-141 22-142 22-144 See spread sheet for results 44 = 0.00256 (1.28) (1.0) (0.85) (102) (1.0) = 22.56 CAMPAD' fig GCp ignore internal pressure for N-S USE a from Spread sheet, GF=0.836, Cpw=0.8, Cpw=0.5 for E-we use a from spreadsheet, GF=0.831, Cpw=0.8, Cpw=-0.494

	151 First Side Wind Loads P03/3 William Buchles	
	Pressure Dingram: Wind from N-S	
	Windward (Ast) Leeward (PSA)	
	24.52	
	23.22	•
EETS EETS	23.22	
50 SH 100 SH 200 SH	22.55	
22-141 22-142 22-144	21.69 9,43psf	*
710.	21,69	
AMF	36139	
3	18.68	
	18.34	
	16.15	
0	Note: Windward distribution is not linear	
1000		
\cup		

	151 First Side	Scismic Design Boll 2	William Buchko	
•	Scismic Site Class; C Seismic Weight: total Dead Load 25% Live Load for S- include fartition Load	lorage (20 pse)		
141 50 SHEETS 142 100 SHEETS 144 200 SHEETS	Using Software from (note that values are a 55=0.125 5,=0.049	Lond (if Af > 30 ps f USGS Websute for Late " ion stant for all of zip code	10, 438 and Long= -80.0 1522	
22 CAMPAD 22	From 11.4 (ASCE 7-05 $F_q = 1.6$ $F_v : 2.4$ From USGS Software SMS = 0.200 SIMI = 0.117 SDS = 0.133 SDI = 0.078	Note: Due to the c of moment an Use the val The designe ASLE 7-02,	empley combination d braced frames, I will lue of R provided by r which is Based off of	
0	T = 1.0 (11.5-1) R=5.5 (construction Do SDC= B Ct and X based on 1 Ce = 0.63 X = 0.75 Ta: 0.03 (213.33) ⁷⁵ Ta: 1.675	braced steel frame as per a Cu=1.4 T=CuTg = 2.34s FL=12	construction documents	
	$C_{S} \geq S_{D_{S}}/(R/I) =$ $\geq S_{D_{I}}/(T(R/I)) =$ $\geq S_{D_{I}}T_{L} = \frac{6.078}{(2.34)^{2}}$ $\frac{C_{S} = 0.01}{(2.5 - 0.01)}$ Weight; Deadload + pr	$0.[33]((5.5/1) = 0.0242)$ $0.076/(2.34(5.5) = 0.0061$ $(12) = 0.031$ $M^{1}n.$ $nrtit.m = 100ps6 + 20ps f = 12$	to pst for Residential Levels	
	pend lad - 100 W= 120 (9(10187) + 8 VBZ CSW = 0.01 (2702 Note: Designer Used pider values of	$\frac{2}{3} \left[\frac{1}{3} + \frac{100(8(1473))}{1} + \frac{100(8(1473))}{1} + \frac{100}{3} + \frac$	to be based on	

HAMBRO SPAN TABLES

的复数化学,并且在这些时间,在这些时间,这些时间的问题。[14] "这时间的时候,我们就是这些时间,我们就是这些时候,你们就是这些时候,你们就是这些时候,你们就是

TABLE 8: MD2000® Clear Span Table

		Resid	dential		Comm	nercial	
Slab Thickness	2 3/4"	3"	3 1/4"	3 1/2"	2 3/4"	3 1/4"	
Joist	LL = 40 psf	LL = 50 psf	LL = 50 psf				
Depth*	DL = 68 psf	DL = 71 psf	DL = 74 psf	DL = 77 psf	DL = 68 psf	DL = 74 psf	
8"	18' - 0"	18' - 0"	18' - 0"	18' - 0"	18' - 0"	18' - 0"	
10"	22' - 6"	22' - 6"	22' - 6"	22' - 6"	22' - 6"	22' - 6"	
12"	27' - 0"	27' - 0"	27' - 0"	27' - 0"	27' - 0"	27' - 0"	
14"	31' - 6"	31' - 6"	31' - 6"	30' - 10"	31' - 6"	31' - 6"	Top of Ciph
16"	35' - 11"	35' - 0"	34' - 1"	33' - 2"	35' - 11"	34' - 1"	s
18"	38' - 7"	37' - 5"	36' - 5"	35' - 7"	38' - 7"	36' - 5"	ckine ckine
20"	41' - 0"	39' - 11"	38' - 10"	37' - 9"	41' - 0"	38' - 9"	F
22"	43' - 0"	42' - 3"	41' - 0"	39' - 11"	43' - 0"	41' - 0"	loist
24"	43' - 0"	43' - 0"	43' - 0"	42' - 1"	43' - 0"	43' - 0"	abt /

NOTES:

- Minimum slab thickness = 2 3/4"
- Minimum top chord cover = 1 1/4"

• $f_{c}^{*} = 3,000 \text{ psi}, F_{y} = 50 \text{ ksi}$ • Joist spacing: 4'-1 1/4''

· Table reflects uniform loads only. • Metal deck standard: / 1/2", 22 ga

• Nominal slab thickness = slab

thickness + 1/2" (Concrete in Deck)

(Galvanized)

· Live load deflection design standard: L/360

· Design clear spans, other than those shown in the above table, require additional structural review.

FIRE PROTECTION - CLEAR SPAN TABLE

5

Proven Concrete Floor System

MD2000 [®] Fin	re Protection
-------------------------	---------------

Floor/ceiling assemblies using Hambro[®] have been tested under restrained and unrestrained conditions by independent laboratories. Fire resistance ratings have been issued by Underwriters Laboratories Inc. (UL) and by Underwriters Laboratories of Canada Inc. (ULC) covering gypsum board, acoustical tile and spray on protection systems. Reference to these published listings should be made in detailing ceiling construction. Check your UL and ULC directory for the latest update of these listings.

ULC/CUL	Rating	Slab Thick	ness*	Ceiling	Beam Rating	
Design No. (hr)		(in.)	(mm)		(hr)	
1522	2	3	75	Gypboard 1/2" (12.7 mm)	1 1/2	
1800	11/2-2	21/2-23/4-3-31/2	65 - 70 - 76 - 89	suspended or panel	1	
G003	2	2 3/4	70	suspended or panel	•	
G213	2 - 3	3-4	75 - 100	suspended or panel	3	
G227	2	2 3/4	70	suspended or panel	3	
G228	2	3 1/4	83	suspended or panel	2	
G229	2-3	3-4	75 - 100	suspended or panel	2-3	
G401	4	2 1/2	65	Plaster	-	
G524	2 - 3	2 3/4 - 3 1/2**	70 - 90	Gypboard 1/2" (12.7 mm)	2-3	
G525	3	3 1/4	83	Gypboard 5/8" (15.9 mm)	3	
G702	1-2-3	Varies**	Varies**	Direct spray on		
G802	1-2-3	Varies**	Varies**	Direct spray on	-	

		MD20	100® Clear Span	Table			
Residential Commercial							
Slab Thickness	2 ³ /4" 3" (70 mm) (75 mm)		3 1/4" (83 mm)	3 1/4" 3 1/2" (83 mm) (90 mm)		3 1/4" (83 mm)	
Joist Depth	LL = 40 psf (1.9 kPa) DL = 68 psf (3.2 kPa)	LL = 40 psf (1.9 kPa) DL = 71 psf (3.4 kPa)	LL = 40 psf (1.9 kPa) DL = 74 psf (3.5 kPa)	LL = 40 pst (1.9 kPa) DL = 77 pst (3.7 kPa)	LL = 50 pst (2.4 kPa) DL = 68 pst (3.2 kPa)	LL = 50 psf (2.4 kPa) DL = 74 psf (3.5 kPa)	
8" (200 mm)	18' - 0" (5 485 mm)	18' - 0" (5 485 mm)	18' - 0" (5 485 mm)	18' - 0" (5 485 mm)	18" - 0" (5 485 mm)	18' - 0" (5 485 mm	
10" (250 mm)	22' - 6" (6 860 mm)	22' - 6" (6 860 mm)	22' - 6" (6 860 mm)	22' - 6" (6 860 mm)	22" - 6" (6 860 mm)	22' - 6" (6 860 mm	
12" (300 mm)	27' - 0" (8 230 mm)	27' - 0" (8 230 mm)	27' - 0" (8 230 mm)	27' - 0" (8 230 mm)	27" - 0" (8 230 mm)	27' - 0" (8 230 mm	
14" (350 mm)	31' - 6" (9 600 mm)	31'-6" (9 600 mm)	31'-6" (9 600 mm)	30' - 10" (9 400 mm)	31' - 6" (9 600 mm)	31' - 6" (9 600 mm	
16" (400 mm)	35' - 11" (10 945 mm)	35' - 0" (10 670 mm)	34' - 1" (10 390 mm)	33' - 2" (10 110 mm)	35' - 11" (10 945 mm)	34' - 1" (10 390 mm	
18" (450 mm)	38' - 7" (11 760 mm)	37' - 5" (11 405 mm)	36' - 5" (11 100 mm)	35' - 7" (10 845 mm)	38' - 7" (11 760 mm)	36' - 5* (11 100 mm	
20" (500 mm)	41' - 0" (12 495 mm)	39' - 11" (12 165 mm)	38' - 10" (11 835 mm)	37' - 9" (10 505 mm)	41" - 0" (12 495 mm)	38' - 9" (11 810 mm	
22" (550 mm)	43' - 0" (13 105 mm)	42' - 3" (12 880 mm)	41' - 0" (12 495 mm)	39' - 11" (12 165 mm)	43" - 0" (13 105 mm)	41' - 0" (12 495 mm	
24" (600 mm)	43' - 0" (13 105 mm)	43'-0" (13 105 mm)	43'-0" (13 105 mm)	42' - 1" (12 825 mm)	43' - 0" (13 105 mm)	43'-0" (13 105 mm	

United States - Main Office 450 East Hillsboro Boulevard Deerfield Beach, Florida 33441 Telephone: (954) 571-3030 Toll Free: 1 800-546-9008 Fax: 1 800-592-4943 Canada - Main Office

270, chemin Du Tremblay Boucherville (Quebec) J4B 5X9 Telephone: (450) 641-4000 Toll Free: 1 866-506-4000 Fax: (450) 641-4001 Printed in Canada 02/2007

For local sales offices or distributors call: 1-800-546-9008

www.hambro.ws

© Canam Group Inc., 1990-2007 © Canam Steel Corporation, 1990-2007

4

HAMBRO'

RAM Frame v11.2 DataBase: New-Floor Building Code: IBC Frame Takeoff

Page 20/21 04/07/08 15:02:13

Columns:

Steel Grade: 50				
Size	#	Length	Weight	UnitWt
		ft	lbs	psf
W12X58	55	606.7	35093	
W12X79	27	300.0	23683	
W12X87	4	45.0	3920	
W12X106	2	20.0	2123	
W12X120	88	943.6	113343	
W12X136	16	170.7	23170	
W12X152	2	25.0	3803	
W12X170	2	20.0	3403	
W12X190	78	826.0	156825	
W12X210	43	463.0	97360	
W12X230	26	291.3	67112	
W12X252	54	577.0	145284	
W12X279	2	30.0	8360	
W12X336	3	35.0	11767	
	402		695245	3.34

Beams:

#	Length	Weight	UnitWt
	ft	lbs	psf
4	32.7	393	
6	78.0	1104	
1	18.0	288	
2	44.0	834	
44	515.2	11377	
20	319.7	9626	
1	16.3	427	
240	3725.7	226925	
35	910.0	61929	
1	8.3	318	
17	301.1	7868	
3	50.7	1827	
3	70.5	2190	
6	124.5	4363	
5	130.0	8891	
2	52.0	6812	
2	32.7	8170	
	# 4 6 1 2 44 20 1 240 35 1 17 3 6 5 2 2 2	$\begin{array}{c c} \mbox{\it #} & \mbox{Length} \\ \mbox{\it ft} \\ \mbox{\it 4} & \mbox{\it 32.7} \\ \mbox{\it 6} & \mbox{\it 78.0} \\ \mbox{\it 1} & \mbox{\it 18.0} \\ \mbox{\it 2} & \mbox{\it 44.0} \\ \mbox{\it 44} & \mbox{\it 515.2} \\ \mbox{\it 20} & \mbox{\it 319.7} \\ \mbox{\it 1} & \mbox{\it 16.3} \\ \mbox{\it 240} & \mbox{\it 3725.7} \\ \mbox{\it 35} & \mbox{\it 910.0} \\ \mbox{\it 1} & \mbox{\it 8.3} \\ \mbox{\it 17} & \mbox{\it 301.1} \\ \mbox{\it 3} & \mbox{\it 50.7} \\ \mbox{\it 3} & \mbox{\it 70.5} \\ \mbox{\it 6} & \mbox{\it 124.5} \\ \mbox{\it 5} & \mbox{\it 130.0} \\ \mbox{\it 2} & \mbox{\it 52.0} \\ \mbox{\it 2} & \mbox{\it 32.7} \end{array}$	# Length ft Weight Ibs 4 32.7 393 6 78.0 1104 1 18.0 288 2 44.0 834 44 515.2 11377 20 319.7 9626 1 16.3 427 240 3725.7 226925 35 910.0 61929 1 8.3 318 17 301.1 7868 3 50.7 1827 3 70.5 2190 6 124.5 4363 5 130.0 8891 2 52.0 6812 2 32.7 8170

_

	<u>Frame</u>	Takeoff			
RAM Frame v11.2 DataBase: New-Floor Building Code: IBC				Page 21/2 04/07/08 15:02:1	1 3
Size	#	Length	Weight	UnitWt	
W30X90	1	16.3	1467		
W33X387	12	139.2	54016		
	405		408829	1.96	
Braces:					
Wide Flange: Steel Grade: 50					
Size	#	Length	Weight	UnitWt	
		Ŭ ft	lbs	psf	
W10X33	8	130.7	4320		
W10X49	2	55.7	2730		
W10X68	2	56.2	3825		
W10X77	7	195.5	15033		
W10X88	3	84.1	7408		
W10X100	1	28.1	2811		
W12X40	18	358.7	14281		
W12X45	5	110.6	4930		
W12X53	6	153.7	8160		
W12X58	1	28.1	1626		
W12X50	40	644.3	32011		
Channel:					
C10X30	19	259.8	7789		
	112		104924	0.50	

Note: Length and Weight based on Centerline dimensions.

Gravity Beam Design Takeoff

RAM Steel v11.2 DataBase: New-Floor Building Code: IBC

Page 11/12 04/07/08 15:02:13 Steel Code: ASD 9th Ed.

Total Number of Stude = 1554

Floor Type: basement Story Level 1

Steel Grade: 50

SIZE	#	LENGTH (ft)	WEIGHT (lbs)
W8X10	12	92.83	935
W10X12	1	12.50	151
W12X14	2	42.08	596
W12X16	1	16.33	262
W12X19	12	236.25	4478
W8X21	1	16.17	339
W14X22	27	683.75	15100
W16X26	12	273.75	7154
W14X30	1	18.00	542
W18X35	7	165.25	5792
W21X83	1	25.75	2129
W36X160	1	25.75	4118
W36X328	1	25.75	8447
W40X431	2	51.50	22256
W40X503	1	25.75	12968
	82		85266

Total Number of Studs = 763

TOTAL STRUCTURE GRAVITY BEAM TAKEOFF

Steel Grade: 50

SIZE	#	LENGTH (ft)	WEIGHT (lbs)
W8X10	157	1475.83	14865
W8X24	2	34.00	819
W8X21	31	332.41	6968
W10X12	151	2713.26	32683
W8X15	3	60.25	910
W10X22	2	21.78	481
W12X14	104	1952.92	27645
W12X16	95	2287.25	36658
W12X19	280	6930.42	131355
W14X22	451	10767.31	237785
W14X43	1	26.00	1115
W14X30	1	18.00	542

Crowity	Room	Design	Takaoff
Gravity	Deam	Design	Tancon

RAM Steel v11.2 DataBase: New-Floor			1015	Page 12/12 04/07/08 15:02:13
ITERNATIONAL Building Code: IBC			Steel	Code: ASD 9th Ed.
SIZE	#	LENGTH (ft)	WEIGHT (lbs)	
W14X26	1	26.00	680	
W14X53	1	15.67	832	
W14X34	1	26.00	885	
W14X38	1	26.00	991	
W16X26	242	5524.67	144378	
W16X31	73	1512.34	46984	
W16X36	7	164.50	5933	
W18X35	69	1718.42	60228	
W18X40	29	817.00	32805	
W21X48	2	49.50	2375	
W21X44	4	94.83	4195	
W21X83	1	25.75	2129	
W24X55	3	87.25	4839	
W24X62	1	25.75	1603	
W24X68	1	18.00	1231	
W24X76	1	25.75	1963	
W27X84	1	25.75	2173	
W30X90	1	33.00	2964	
W33X118	2	43.75	5166	
W33X130	4	87.50	11404	
W33X141	2	51.50	7290	
W36X160	2	51.75	8276	
W33X387	1	26.00	10086	
W36X328	ĩ	25.75	8447	
W40X167	1	23 50	3934	
W40X199	5	121.42	24169	
W40X431	2	51.50	22256	
W40X503	3	77.25	38904	
W44X230	ĩ	73.00	16817	
W44Y262	2	49.25	12938	

Total Number of Studs = **12751**

Gravity Column Design TakeOff

RAM Steel v11.2 DataBase: New-Floor Building Code: IBC

04/07/08 15:02:10 Steel Code: ASD 9th Ed.

Steel Grade: 50

I section

Size	#	Length (ft)	Weight (lbs)
W12X40	113	2027.3	80711
W12X45	15	287.3	12808
W12X50	17	358.6	17818
W12X53	17	305.3	16207
W12X58	11	227.0	13131
W12X65	25	463.3	30113
W12X72	4	71.3	5122
W12X79	12	197.7	15604
W12X87	4	65.7	5720
W12X96	5	105.0	10076
W12X106	6	115.7	12280
W12X120	3	30.0	3604
W12X136	3	45.0	6110
W12X170	4	70.0	11910
W12X252	1	20.0	5036
W12X279	1	15.0	4180
	241		250428

Structural Steel Cost

Project A	150,000	SF			\$/Ton		\$/SF	#/SF	
	Structural Steel		454	Tons					
	Contract	\$	818,865.00		\$ 1,803.67	\$	5.46	6.05	
	Vescom Joist, Joist Gir	S	822,463.00				5.48		
	Erection	S	508,000.00				3.39		
		S	2,149,328.00				14.33		
Project B	224,000	SF			\$/Ton		\$/SF	#/SF	
	Structural Steel		1,308	Tons					
	Contract	Ś	2.275.052.00		\$ 1,739.34	\$	10.16	11.68	
	Hambro Joist, Joist Gir	\$	538,948.00				2.41		
	Erection	\$	970,000.00				4.33		
		S	3,784,000.00				16.89		
Proiect C									
,	231,895	SF							-
	Structural Steel		231,895	SF	12	#/S	F	1,391	Tons
			1,391	Tons	\$ 2,000.00	/T	on	2,782,740	
	Beam Penetartions							50,000	
	Hambro Joist & Deckin	ng						939,995	
	Erection	\$	231,895	SF	4.33	/S	F	1,004,188	
							s	4,776,923	\$ 20.60
Desired D									
Project D	231.895	SF							
	Structural Steel		231,895	SF	12	#/S	F	1.391	Tons
	ou avea an order		1,391	Tons	\$ 2,000,00	/T	on	2,782,740	10110
	Beam Penetartions		.,	10110	4 2,000,000			50.000	
	Vescom Joist & Deck							674.635	
	Erection	s	231,895	SF	4.33	/S	F	1.004.105	
			201,000		1.55		S	4,511,480	\$ 19.45
								,,	

Project D	231,895 SF							
(Alternative)	Structural Steel	231,895	SF	6.25	#/SF	725	To	15
		725	Tons	\$ 2,000.00	/Ton	1,449,344		
	Beam Penetartions					50,000		
	Vescom 16" deep Joists & De	cking				675,635		
	Vescom 16" deep Joists Girde	ers				266,216		
	Erection	231,895	SF	4.00	/SF	927,580		
	Garage Level Structure \$	52,042	SF	20.15	/SF	1,048,646		
						\$ 4,417,421	\$	19.05

05 21 Steel Joist Framing

05 21 2	23 -	Steel	Joist	Girder	Framing
---------	------	-------	-------	--------	---------

			Daily	Labor-			2008 Ba	re Costs	
05 21	23.50 Joist Girders	Crew	Output	Hours	Unit	Materia	Lapor	Equipment	Total
7104	20 to 29 tons, add					20°5			
7106	10 to 19 tons, add					30°a			
7107	5 to 9 tons, add					50°°	25%		
7108	1 to 4 tons, add					75%	50%		
7109	Less than 1 ton, add					100%	100%		
8000	Trusses, 40-ton job lats, shop fabricated WT chords, shop primer, average	E-5	11	7.273	Ton	4,950	310	154	5,414
8100	For less than 40-ton job lots								
8102	For 30 to 39 tons, add					10° n			
8104	20 to 29 tons, add					20° o			
6106	© to 19 rons, add					30°c			
8107	5 to 9 tons, add					50°6	25°0		
8108	I to 4 tons, add					75%	50%		
8109	Less than 1 ton, add					100%	100%		

05 31 Steel Decking

05 31 13 - Steel Floor Decking

05 3	1 13.50 Floor Decking								
0010	FLOOR DECKING R053100-10)							
3200	Open decking, 3" deep, wide rib, 22 gauge, galvanized, under 50 squares	E-4	3600	.009	S.F.	2.21	.39	.04	2.64
3250	50-500 squares		3800	.008		1.77	.37	.03	2.17
3260	aver 500 squares		4000	.008		1.59	.35	.03	1.97
3300	20 gauge, under 50 squares		3400	.009		2.58	.41	.04	3.03
3350	50-500 squares		3600	.009		2.06	.39	.04	2.49
3360	over 500 squares		3800	.008		1.85	.37	.03	2.25
3400	18 gauge, under 50 squares		3200	.010		3.32	.44	.04	3.80
3450	50-500 squares		3400	.009		2.66	.41	.04	3.11
3460	over 500 squores		3600	.009		2.39	.39	.04	2.82
3500	16 gauge, under 50 squares		3000	.011		4.39	.46	.04	4.89
3550	50-500 squares		3200	.010		3.57	.44	.04	3.99
3560	over 500 squares		3400	.009		3.16	.41	.04	3.61
3700	4-1/2" deep, long span raof, over 50 squores, 20 gauge		2700	.012		4.13	.52	.05	4.70
3800	18 gouge		2460	.013		5.30	.57	.05	5.92
3900) 6 gauge		2350	.014		3.98	.59	.06	4.63
4100	6" deep, long span, 18 gauge		2000	.016		7.60	.70	.07	8.37
4200	16 gauge	1	1930	.017		5.70	.72	.07	6.49
4300	14 gauge		1860	.017		7.30	.75	.07	8.12
4500	7-1/2" deep, long span, 18 gauge		1690	.019		8.35	.82	.08	9.25
4600	16 gauge		1590	.020		6.25	.88	.08	7.21
4700	14 gauge	÷.,	1490	.021		8.05	.93	.09	9.07
4800	For painted instead of galvonized, deduct					2°0			
5000	For acoustical perforated, with fiberglass, add				S.F.	1.09			1.09
5200	Non-cellular composite deck, galv., 2" deep, 22 gauge	E-4	3860	.008		1.53	.36	.03	1.92
5300	20 gauge	8	3600	.009	ŝ.	1.69	.39	.04	2.12
5400	18 gauge		3380	.009	1	2.15	.41	.04	2.60
5500	16 gauge		3200	.010		2.69	.44	.04	3.17
5700	3" deep, galv., 22 gauge		3200	.010		1.67	.44	.04	2.15
5800	20 gauge		3000	.011		1.86	.46	.04	2.36
5900	18 gauge CN	1	2850	.011		2.29	.49	.05	2.83
6000	16 gauge	1	2700	.012	Ψ.	3.06	.52	.05	3.63

					n, stine	
Crew No.	Bare	Costs	Subs	0 & P	Per Lat	or-Hou
Crew D-9	Hr.	Daily	Hr.	Daily	Bare Costs	Inci. O&P
3 Bricklayers	\$39.15	\$939.60	\$59.55	\$1429.20	\$34.88	\$53.05
3 Bricklayer Helpers	30 60	734.40	46.55	117 20		
48 L.H., Daily Totals		\$1674.00		\$2546.40	\$34.88	\$53.0
Crew D-10	Hr	Daily	Hr	Daily	Bare	Incl.
1 Bricklaver Enreman	\$41.15	\$329.20	\$62.60	\$500.80	\$37.96	\$57.6
1 Bricklayer	39 15	313 20	59.55	476 40	\$37.50	Q07.0
1 Bricklayer Helper	30.60	244.80	46.55	372.40		
1 Equip. Oper. (crane)	40 95	327.60	61.75	494 CO	3.834.9752.07	
1 S.P. Crane, 4x4, 12 Ton		611.00		672.10	19 09	21.0
32 L.H., Daily Totals		\$1825.80		\$2515.70	\$57.06	5/8.6
Crew D-11	Hr.	Daily	Hr.	Daily	Bare Costs	Incl. O&F
1 Brickiayer Foreman	\$41 15	\$329.20	\$62.60	\$500.80	\$36.97	\$56.2
1 Bricklayer	39.15	313.20	59.55	476.40		
1 Bricklayer Helper	30.60	244.80	46.55	372.40	1.1.1	
24 L.H., Daily Totals		\$887.20		\$1349 60	\$36.97	\$56.23
Crew D-12	Hr.	Daily	Hr.	Daily	Bare Costs	Inci. 0&P
1 Bricklayer Foreman	\$41.15	\$329.20	\$62.60	\$500.80	\$35.38	· \$53.8
1 Bricklayer	39.15	313.20	59.55	476 40		
2 Bricklayer Helpers	30.60	489 60	46.55	744.80		
32 L.H., Daily Totals		\$1132.00		\$1722.00	\$35.38	\$53.8
Crew D-13	Hr	Daily	Hr	Daily	Bare	Incl.
1 Bricklaver Foreman	\$41.15	\$329.20	\$62.60	\$500 80	\$36.76	S56 C
1 Bricklayer	39.15	313 20	59.55	476.40		
2 Bricklayer Helpers	30.60	489 60	46 55	744.80		
1 Carpenter	38 10	304.80	59.30	474 40		
1 Equip Oper (crane)	40.95	327.60	61.75	494.00	10.70	14.0
1.5.P. Crane 4x4, 12 100		\$2375.40		\$3362.50	549.49	\$70.0
40 E.M., Daily lotais		\$2575.40		\$5502.50	Bare	Incl
Crew E-1	Hr.	Daily	Hr.	Daily	Costs	O&P
1 Welder Foreman	\$45.00	\$360.00	\$81.20	\$649.60	\$41.92	\$71.9
1 Welder	43.00	344.00	77.55	620 40		
1 Equip. Oper. (light) 1 Welder, das engine, 300 amo	37.75	1302.00	20.95	400.00	5.51	6.0
24 L.H., Daily Totals		\$1138.20		\$1871.02	\$47.42	\$77.9
					Bare	Incl
Crew E-2	Hr.	Daily	Hr.	Daily	Costs	0&F
1 Struc. Steel Foreman A Struc. Steel Workers	\$45.00	5360.00	581.20	2481.60	541.80	\$12.3
1 Equip. Oper. (crane)	40.95	327.60	61.75	494.00		
1 Equip Oper Oiler	35.10	280.80	52.95	423.60		
1 Lattice Boom Crane, 90 Ton		1567.00		1723.70	27.98	30.7
56 L.H., Daily Totals		\$3911.40		\$5772.50	\$69.85	\$103.0
Crew E-3	Hr.	Daily	Hr.	Daily	Bare Costs	Incl. 0&F
1 Struc. Stee Foreman	\$45.00	\$360.00	\$81.2C	\$649.60	\$43.67	\$78.7
1 Struc. Steel Worker	43.00	344.00	77.55	620.40		
1 Welder	43.00	344.00	77 55	620 40		
1 Welder, gas engine, 300 amp		132.20		145.42	5.51	6.0
24 L.M., Dally lotals		51180.20		\$2035.82	\$49.17 Deci	584.8
					Bare	Incl
Crew E-4	Hr.	Daily	Hr.	Daily	Costs	Udd
Crew E-4 1 Struc. Steel Foreman	Hr. \$45 CO	Daily \$360.00	Hr. \$81.20	Daily \$649.60	\$43 50	578 4
Crew E-4 1 Struc. Steel Foreman 3 Struc. Steel Workers	Hr. \$45.00 43.00	Daily \$360.00 1032.00	Hr. \$81.20 77.55	Daily \$649.60 1861.20	\$43 50	578 4

10000000000000000000000000000000000000	Not Network with the second of	Pristo in the second seco	Tasi Community Program Annany University Spin	Page 1
	All month All month Rest Biology Second Biology Rest Biology Second Biology Rest Control Biology Second Biology Rest Con	100 100 100 100 100 100 100 100 100 100		

	FirstSond Sond Sond Sond Sond Sond Sond Sond	
At Mark Strategy and a set of the	sk Nom e	Se a version of the second sec

Internation Internation <thinternation< th=""> <thinternation< th=""></thinternation<></thinternation<>	FritSusjäradus 23.10. Luo-33.10. Luo-10.10. Luo-11.00. Luo-13.00. Luo-13.00. Luo-13.00. Luo-13.00. Luo-13.00. Luo-13.00. Luo-13		Badatuly Syst	Page 6
Att Name Att Name Att Name Att Name 100	Dec 10.16 [Dec 27.16 [Dec 24.08 [Dec 24.08 [Dec 24.08 [Men 2.09 [Lev 14.0		Fingess San and Garanty Garanty Control (1998)	
	Task Nama Nov 26-26 Dec 3-36	Bit A closest 1000 1000 Private Statistication Private Statistication Private Statistication Private Statistication Private Statistication Private Statistication	Side Schedule Teak	

	>		Ceddo
0.02 0.03 0.03 0.03 0.04 0.01 0 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0.01 0			East Up Photos
		Tradition of the second se	0 yourd & first starts (sp.f. trens.) 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts 0 yourd & first starts

27 Acc 1.07 Acc 8.07 Acc 15.07 Acc 22.07 A	41 42 43 43 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 44 1 1 1 1 1 44 1 1 1 1 1 44 1 1 1 1 1 44 1 1 1 1 1 44 1 1 1 1 1 44 1 1 1 1 1 44 1 1 1 1 1 44 1 1 1 1 1 44 1 1 1 1 1 44 1 1 1 1 1	Ą	
eb 25, 30 Mars 4, 37 Mart 1, 32 Mart 5, 3		Projed Summery Ummer Devides	External Milettone
First State State date 7 Juan 20, 07 Feb 4, 07 Feb 11, 07 Feb 18, 02 F		d Up Spitt	d Up Meatone 🛇 External Tasks E
1.06 Dec 31.06 And 7.97 And 4.02 And 21.07		Summary U Refe	Roled Up Task Cales
2.06 Dec3.06 Dec10.06 Dec17.06 Dec24		Progess	Wiestone O
Fack Name	Bit CigRI Bit CigRI Bit CigRI Bit CigRI Distribution City Local Solution Distribution Distributio Distribution Distreased Distribution Distribut	at Side Proposed Schedule Task	48.05 Set
9		Project F	Date: Tue

201 Auto 201 201 201 201 201 201 201 201 201 201				Deodree ô
1/23.17 Am 12.17 Am 13. 1/23 Am 16.2 Am 13. 1/23 Am 16.2 Am 13. 1/24 Am 14. 1/25 Am 16. 1/25 Am 16. 1/25 Am 15.17 Am 13. 1/25 Am 15.17 Am 13. 1/27 Am 15.17 Am 15.1		Deve & Parlament		Projed Summery
1.07 34.07 34.5.07 34.22.07				Roled Up Progress
610			Poologo	anney Concerd Up Spin
513 520 527 60	at parts	Emeloc contrologue	tons boers and the server in the server is the and the server is the server is the and the server is	Progress Sthill plantching factures
403	000 1.00 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	oo fiked ooth up out is una series of the fired of the fi	Tak

